Gum disease strongly linked to genes, epigenetics

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis.

Biological sciences including genetics and epigenetics can be analyzed for how gene regulation affects the body’s immune response to an inflammatory disease such as periodontitis, commonly known as gum disease. Genetics and epigenetics can be defined as the processes by which genes were expressed or suppressed through polymorphism, (de)methylation, or (de)acetylation.

Studies note that specific environmental factors such as race, gender, diabetes, education, smoking, and body mass index (BMI) all increase the severity of periodontal disease. One quarter of chronic periodontitis patients tested for hyper/hypo methylation proved to be a significant factor in response to inflammatory disease. The authors concluded while it was not genetics alone that affected response or susceptibility to periodontitis, it was environmental factors that also regulated gene transcription. These regulations stimulated cytokines such as IL-1 and IL-6, which were noted in inflammatory destruction of periodontal tissues.

Studies were conducted using different methods in the evaluation of genetic predisposition to periodontitis. Methods used were familial aggregation, twin studies, association studies, segregation, and linkage analysis. Familial aggregation studies focused on members of families who had a history of aggressive periodontitis. Familial studies conducted in Germany were reviewed by Hassell and Harris (1995) and concluded, “This aggregation within families strongly suggests a genetic predisposition.”

Read full, original post: How genetics and epigenetics link to periodontal disease: Research paper

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.