How genetically modifying chestnuts could bring them back

The following is an edited excerpt. 

Around the turn of the 20th century, the forests in the eastern U.S. were dominated by the American chestnut. These “sequoia of the east” ruled the roost back then and were the cornerstone tree species. By midcentury, though, almost all of these majestic trees had been turned into shrubs. No, this wasn’t magic. Instead, a fungus arrived from Asia that prevented the trees from growing bigger than this. Nowadays the only tall chestnuts are a few that happened to be planted outside of the tree’s old range. And even some of these are starting to be done in.

Ever since the blight started stunting the chestnut, scientists have been looking for ways to help these trees fight back. And now they may finally be getting close to a solution.

There is a very clever genetic modification that involves moving a wheat gene into the American chestnut. Early studies look to be very promising and these trees have even been shown to be resistant in the field. The researchers are hoping to get approval soon from the U.S. government for widespread planting. The idea behind this method rests on the knowledge that the chestnut blight needs an acidic environment to do its dirty work. The way this little monster accomplishes this is by making and then pumping oxalic acid into the tree. This is incredibly damaging to the chestnut.

Read the full story: Saved From Living Death: How Genetically Modifying Chestnuts Could Bring Them Back

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.